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Abstract

The response of a micropolar cubic crystal due to various sources has been studied. The eigenvalue approach using
Laplace and Fourier transforms has been employed to solve the problem. The integral transforms have been inverted by
using a numerical technique to obtain the displacement, microrotation and stress components in the physical domain.
The results of normal displacement, normal force stress and tangential couple stress have been compared for micropolar
cubic crystal and micropolar isotropic solid and illustrated graphically.
© 2005 Published by Elsevier Ltd.
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1. Introduction

The classical theory of elasticity does not explain certain discrepancies that occur in the case of problems
involving elastic vibrations of high frequency and short wavelength, that is, vibrations due to the generation
of ultrasonic waves. The reason lies in the microstructure of the material which exerts a special influence at
high frequencies and short wavelengths.

An attempt was made to eliminate these discrepancies by suggesting that the transmission of interaction
between two particles of a body through an elementary area lying within the material was affected not solely
by the action of a force vector but also by a moment (couple) vector. This led to the existence of couple
stress in elasticity. Polycrystalline materials, materials with fibrous or coarse grain structure come in this
category. The analysis of such materials requires incorporating the theories of oriented media. For this rea-
son, micropolar theories were developed by Eringen (1966a,b) for elastic solids and fluids.
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Following various methods, the elastic fields of various loadings, inclusion and inhomogeneity problems,
and interaction energy of point defects and dislocation arrangement have been discussed extensively in the
past. Generally all materials have elastic anisotropic properties which mean the mechanical behavior of an
engineering material is characterized by the direction dependence. However the three-dimensional study for
an anisotropic material is much more complicated to obtain than the isotropic one, due to the large number
of elastic constants involved in the calculation.

Because a wide class of crystals such as W, Si, Cu, Ni, Fe, Au, Al, etc., which are some frequent used
substances, belong to cubic materials. The cubic materials have nine planes of symmetry whose normals
are on the three coordinate axes and on the coordinate planes making an angle ©/4 with the coordinate
axes. With the chosen coordinate system along the crystalline directions, the mechanical behavior of a cubic
crystal can be characterized by four independent elastic constants 4, A,, A3 and Ag4.

To understand the crystal elasticity of a cubic material, Chung and Buessem (1967) presented a conve-
nient method to describe the degree of the elasticity anisotropy in a given cubic crystal. Later, Lie and
Koehler (1968) used a Fourier expansion scheme to calculate the stress fields caused by a unit force in a
cubic crystal. Steeds (1973) gave a complete discussion on the displacements, stresses and energy factors
of the dislocations for two-dimensional anisotropic materials. Boulanger and Hayes (2000) investigated
inhomogeneous plane waves in cubic elastic materials. Bertram et al. (2000) discussed generation of discrete
isotropic orientation distributions for linear elastic cubic crystals. Kobayashi and Giga (2001) investigated
anisotropy and curvature effects for growing crystals. Domanski and Jablonski (2001) studied resonances of
nonlinear elastic waves in cubic crystal. Destrade (2001) considered the explicit secular equation for surface
acoustic waves in monoclinic elastic crystals. Zhou and Ogawa (2002) investigated elastic solutions for a
solid rotating disk with cubic anisotropy. Minagawa et al. (1981) discussed the propagation of plane har-
monic waves in a cubic micropolar medium. Recently Kumar and Rani (2003) studied time harmonic
sources in a thermally conducting cubic crystal. However no attempt has been made to study source prob-
lems in micropolar cubic crystals.

The present investigation is to determine the components of displacement, microrotation and stresses in
micropolar cubic crystal due to concentrated force, uniformly distributed force and linearly distributed
force. The solutions are obtained by using eigenvalue approach after employing integral transformation
technique. The integral transforms are inverted using a numerical method.

2. Problem formulation

We consider a homogeneous micropolar cubic crystal of infinite extent with Cartesian coordinate system
(x,»,z). To analyze the displacements, microrotation and stresses at the interior of the medium due to var-
ious sources, the continuum is divided into two half-spaces defined by

(i) half space T |x| < oo, —00 <y <0, |z] < o0,
(ii) half space IT | x | < o0, 0 < y < o0, | 2| < c0.

If we restrict our analysis to the plane strain parallel to xy-plane with displacement vector i = (u1, u2,0)
and microrotation vector ¢ = (0,0, ¢;) then the field equations and constitutive relations for such a med-
ium in the absence of body forces and body couples given by Minagawa et al. (1981) can be recalled as

u o’u o’u 0 o’u
A1§;+A3W;+(A2+A4)axa;+(143—A4)ai;=Pa—tzl’ (1)

O*us Ous ouy oy,  uy
A3@+A1Ty2+(1‘12+1‘14)ax6y—(Aa—A4)a*PW7 (2)
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B0, + (s~ 49 (2 -2 204y~ 4y = i G ®)
tzngz%—i-Al%, (4)
f = A4 (% - ¢3> +4; (%-’- ¢3>7 (5)
my; = 33%, (6)

where 155, t>1, M>3 are the components of normal force stress, tangential force stress and tangential couple
stress respectively 4, A,, Az, A4, B3 are characteristic constants of the material, p is the density and j is the
microinertia and

V2= a_z a_z
o2
Introducing the dimensionless variables defined by the expressions
* w* o’ w* A
xl:_x’ y/:—% u/lz_ulv u/zz_u% ¢/3:_¢37
C1 cy cy cy Ay ™
(t2,t21) / Ci / ,_ o
by, b} =2 i, = m =o't d=—a
{ 22 21} Al ’ 23 B3w* 23, ) cl 9
where
As—A A
w? =" 2 c%:fl (8)

pJ P
Using (7), the system of Egs. (1)—(3) reduce to (dropping the primes),

62u1 azu] 62142 A4(A3 — A4) aqﬁ; 262141
Al —+ 43—+ (4, + 4 it R it
‘o T T A et T o e ®)
62u2 62u2 62141 A4<A3 — A4) 6(15; 62142
As—4+ A —+ (4, + 4 — = pct—= 1
a2 TG Tt Ada 4 o e (10)
A4CO*2 2 6142 6u1 A4(A3 — A4> . 2A4 62(;’)3
A3 —Ay)| ——— | —2——— ¢y = = . 11
B3 AIC% \% ¢3+( 3 4)(ax ay Al ¢3 pjw A] 6[2 ( )
The initial conditions are given by
u,(x,v,0) =1,(x,y,0) =0; n=1,2,
(x,,0) . (x,5,0) (12)
(]53()(,}/, O) = (]’)3()@}/, 0) =0.
Applying the Laplace transform with respect to time ‘7’ defined by
{ﬁn(x7y7p)7<?>3(xvyap)} :/ {u,,(x,y,t),¢3(x,y,t)}€7ptdt, n=1,2 (13)
0

and then the Fourier transform with respect to ‘x” defined by

(in(erp) by = [ (o) Balrynp) ey, n=1,2 (14)
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on Egs. (9)—(11) and with the help of initial conditions (12), we obtain

Dty = byt + anDiiy + ai3Dé, (15)
DPity = bty + az Dity + by s, (16)
D2($3 = b33$3 + d31DZ~41 + b32D£[2, (17)
where
_paipt+ &4, _pdlp? + E4y 18445 — Ay)
bh=———"—, bp="—""—", bny=—"7"—5—"-,
As A A7
) 2
lgclAl(A3 —A4) 1 2 ) (en
32 *2A4,B; v D33 B, $°Bs + pjeip + 2(43 4) 2|’ (18)
a3 = _A4(A3 — A4> ay = 15(142 +A4) a5 = A1<A'; - A4)C%
) A]Ag ’ A] ’ A4B3CO*2
1E(Ar + As) d
= — D = —.
ap As ) dy
Egs. (15)—(17) may be written as
DW (¢, y,p) = A&, p)W (S, y,p), (19)
where
iU
14 o 1 .
W= , A= . ), V=|u|,
DV A7 A4 3
’ (20)
by 0 0 0 apn ap
AT = 0 b22 b23 s A; = ajy 0 0 y
0 by b3y a; 0 0
O and [ are respectively zero and identity matrix of order 3.
To solve Eq. (19), we assume
W(&,y,p) = X(& p)e”, (21)
which leads to eigenvalue problem. The characteristic equation corresponding to matrix A is given by
|4 —qI| =0, (22)
which on expansion provides us
¢° + g+ Jag’ + 23 =0, (23)

where

A = —(anax + azaz + by + by + bs3),
Jo = ann(aznbss — byasi) + ai3(bnasi — anby) + bnbss — basby + bii (b + bs3), (24)
A3 = b11(basbz — bybss).

The eigenvalues of the matrix 4 are the characteristic roots of Eq. (23). The vectors X(¢, p) corresponding to
the eigenvalues ¢, can be determined by solving the homogeneous equation

4 — qllX(E,p) = 0. (25)



R. Kumar, P. Ailawalia | International Journal of Solids and Structures 42 (2005) 5931-5944 5935

The set of eigenvectors X (&, p), s =1,2,...,6 may be obtained as

Xa(S,p)
w60 = (o) 2
where
s I,
Xa(ép)=|a |, Xalp=|aq,|, 9=95 g=12,3, (27)
by beq,
—4r qr
Xun(Gp)=| a |, Xw&p)=| —argz |, R=8+3; ¢=—q,; g¢=1,2,3 (28)
bg —brgy
and
biiby — qg(by + anais)
a, = v, ,
b — qya31 + agby (29)
¢ qf, — b33
V, = q§a13 + ainbyy — byais.
The solution of Eq. (21) is given by
3
W(&y,p) = Y _[BX(&p)exp(q,y) + BeaXoia(E, p) exp(—q,p)], (30)

s=1
where B=(E = 1,2,...,6) are arbitrary constants.
)

Eq. (30) represents the solution of the general problem in case of micropolar cubic crystals and can be
applied to a class of problem in the domain of Laplace and Fourier transforms.

3. Application
3.1. Mechanical sources

We consider an infinite micropolar cubic crystal in which a normal force Fy = Fi/(x)d(¢) is acting at the
origin of the Cartesian coordinate system, where d(¢) is Dirac delta function, F is the magnitude of force
applied and (x) specify the vertical load distributed function along x-axis. Also the components of dis-
placement, microrotation, tangential force stress and tangential couple stress must be continuous across
the interface. Mathematically the boundary conditions at the interface of two half-spaces y = 0 are given by

ul(x30+7t) 7u1(x,07,t) :07 u2(x70+7t) 7u2(x7077t) :0, ¢3(X,0+,t) 7(1)3()6,07,0 :07
tn(x,0%,1) — tp(x,071) = —=Fy(x)5(¢), ta1(x,07,8) — t1(x,07,¢) =0, (31)
m23(x, 0+7 t) — I’YZ23(X, 07, t) = 0

Using (7) and applying Laplace and Fourier transforms defined by (13) and (14) on Eq. (31), after suppress-

ing the primes, and with the help of Eq. (30), we obtain the transformed components of displacement,
microrotation and stresses as
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i = _Xl (g1 Ae™ + g, Age™ Y 4 g Aze™ 8 — g, A — g, Ase® — g Age®], (32)

iy = %[alAle“W + arAse™ " + azAze™ ™ + a1 A + ar Ase®™ + azAge®™], (33)

(}3 = %[blAle_q‘y + byAse™ ™ 4 b3 Aje " + b Age?” + byAse® + by Age®], (34)

Iy = % [F1A1e™ 1Y 4+ 1 Ase ™ + 13 Aze®™ — riAge?” — ryAse® — r3Age®™], (35)

by = % [s1A1€79Y + 55A0e™ T 4 53A3879 — 51 A48 — 5,A5e7 — 53467, (36)

My = —ﬁ [b1g,A1e™1Y + bagr Age™ " + byg;Aze™ " — big Age?” — byg,Ase®™ — bigiAge®], (37)
where

Ay = HAFY(OG,  Ass = FAFY(OMG, Ay = H4FY(E)hG,
A = 8G[S1((12b3 — [13b2) — S2((11b3 — a3b1) —+ S3(a1b2 — azbl)],

G = 119,95(bs — by) — r2q,95(b3 — b1) + r3q,95(b2 — by),
As (38)

1 .
hip3 = 83320211 — $2110332, Sg = T —1lagAy4 +A36]§, + by(4; — A4)A— )
| |

.. A
rg:qg{lfA—?—ag}, g=1,273.

3.1.1. Concentrated normal force
In order to determine displacements, microrotation and stresses due to concentrated force described as
Dirac delta function, y(x) = J(x) must be used. The Fourier transform of y(x) with respect to pair (x, ¢) will

be Y(&) = 1.

3.1.2. Uniformly distributed force
The solution due to uniformly distributed force is obtained by setting

1 if x| < aq,
0 if |x| > a,

Y(x) =

in Eq. (31). The Fourier transform with respect to the pair (x, &) for the case of a uniform strip load of unit
amplitude and width 2a applied at the origin of the coordinate system (x =y = 0) in dimensionless form
after suppressing the primes becomes

W) = [2 sin <5(j“) / é], 40, (39)

3.1.3. Linearly distributed force
The solution due to linearly distributed force is obtained by substituting

x| .
W(x) = l—; if |x| < a, (40)

0 if |x| > a,
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in Eq. (31). The Fourier transform of 1(x) in dimensionless form after suppressing the primes is

_ Sera
(p(g) — w. (41)

<2
éera
w*

The expressions for the components of displacement, microrotation, force stress and couple stress may be

obtained as in Eqs. (32)~(37), by replacing (&) by 1, [2sin (£24) /¢] and

=t M in case of concen-

Zea
o

trated force, uniformly distributed force and linearly distributed force respectively.

3.2. Particular case

Taking A1 =21+2u+ K, A, =1, A3 =u+ K, Ay = p, B3 =7, in Egs. (32)—(37) with (39)—(41) we obtain
the corresponding expressions in micropolar isotropic medium for concentrated force, uniformly distrib-
uted force and linearly distributed force respectively. These results tally with the one if we solve the problem
in micropolar isotropic medium.

4. Inversion of the transform

The transformed displacements and stresses are functions of y, the parameters of Laplace and Fourier
transforms p and ¢ respectively, and hence are of the form f(&,y,p). To get the function in the physical
domain, first we invert the Fourier transform using

- 1 [~ ..~ 1 [~ .
Ty =5 [ e TErmdz =1 [ feos(ens~isin(enfi}de, *2)

where f, and f,, are even and odd parts of the function f(¢, y, p) respectively. Thus, expressions (42) give us
the transform f'(x,y, p) of the function f{x,y,?).

Now, for the fixed values of &, x and y, the f(x,y,p) in the expression (40) can be considered as the
Laplace transform g(p) of some function g(¢). Following Honig and Hirdes (1984), the Laplace transformed
function g(p) can be converted as given below.

The function g(¢) can be obtained by using

1 C+ioco
1) =— ept7 d B 43
e =50 [ ey @3)
where C is an arbitrary real number greater than all the real parts of the singularities of g(p). Taking
p=C+1iy, we get
eCt oo
8(t) =7 / ¢”g(C +1iy)dy. (44)

Now, taking e “g(¢) as A(¢) and expanding it as Fourier series in [0,2L] we obtain approximately the
formula

8(t) = g(0) + Evy,

where
Ci =
goo(t) 7+ch, O<f<214,
k=l . (45)
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Ep is the discretization error and can be made arbitrary small by choosing C large enough. The value of C
and L are chosen according to the criteria outlined by Honig and Hirdes (1984).

Since the infinite series in Eq. (45) can be summed up only to a finite number of N terms, so the approx-
imate value of g(¢) becomes

N
(=4 >, 0<i<aL (46)
k=1

Now, we introduce a truncation error Et that must be added to the discretization error to produce the total
approximation error in evaluating g(7) using the above formula. Two methods are used to reduce the total
error. The discretization error is reduced by using the “Korrecktur”’-method, Honig and Hirdes (1984) and
then ““e-algorithm” is used to reduce the truncation error and hence to accelerate the convergence.

The “ Korrecktur”’-method formula, to evaluate the function g(¢) is

g(t) = g (t) — e g (2L + 1) + Epy, (47)
where

|Ep| < |Ep|- (48)
Thus, the approximate value of g(#) becomes

8w, (t) = gn(t) — eichgN’ (2L +1), (49)

where, N’ is an integer such that N’ < N.

We shall now describe the e-algorithm which is used to accelerate the convergence of the series in Eq.
(46). Let N be a natural number and S,, = > ;" C; be the sequence of partial sums of Eq. (46). We define
the e-sequence by

Eo.m = 07 Elm = Sma

Entlm = En—1m+1 —‘r;, n,m = 1,2,3
nm+1 — Enm
It can be shown Honig and Hirdes (1984) that the sequence ¢ 1,¢31,. . .,&x,1 converge to g(7) + Ep — Co/2
faster than the sequence of partial S,,,; = 1,2,3,... The actual procedure to invert the Laplace transform
reduces to the study of Eq. (47) together with the ¢-algorithm.

The last step is to evaluate the integral in Eq. (42). The method for evaluating this integral is given by
Press et al. (1986) and which involves the use of Rhomberg’s integration with adaptive step size. This also
uses the results from successive refinement of the extended trapezoidal rule followed by extrapolation of the
results to the limit when the step size tends to zero.

5. Numerical results and discussions

For numerical computations, we take the following values of relevant parameters for micropolar cubic
crystal as

A; = 13.97 x 10" dyne/cm?, 43 = 3.2 x 10'” dyne/cm?, 4, = 13.75 x 10" dyne/cm?,
Ay =22 x 10" dyne/cm?, B; = 0.056 x 10" dynes.

For the comparison with micropolar isotropic solid, following Gauthier (1982), we take the following val-
ues of relevant parameters for the case of aluminium epoxy composite as
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Fig. 1. Variation of normal displacement U,(=u,/F) with distance x for concentrated force.
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Fig. 2. Variation of normal force stress T»»(=t2,/F) with distance x for concentrated force.

p =219 gm/ecm?, =759 x 10" dyne/cm?, u=1.89 x 10" dyne/cm?,
K =0.0149 x 10" dyne/cm?, 7 = 0.0268 x 10" dyne, j = 0.00196 cm’.
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The values of normal displacement U, = (u,/F) normal force stress T», = (¢,,/F) and tangential couple
stress M»3 = (my3/F) for a micropolar cubic crystal (MCC) and micropolar isotropic solid (MIS) have been
studied at # = 0.1, 0.2 and 0.5 and the variations of these components with distance x have been shown by
(a) solid line ( ) for MCC and dashed line (- - - -) for MIS at r=0.1, (b) solid line with centered symbol
(x—x—x) for MCC and dashed line with centered symbol (x---Xx---x) for MIS at = 0.2 and (c) solid line

0.50
N X S mg&gt:ﬁoil)
& - — a
D40 7 K0 MCC(t=0.£)
1 x%00¢ MIS(t=0.2

= =

) 9

< <
L 1

Tangential couple stress M
=
=
1

0.00 A

-0.10
0.0 2.0 4.0 6.0 8.0 10,9

Fig. 3. Variation of tangential couple stress My3(=m»3/F) with distance x for concentrated force.
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Fig. 4. Variation of normal force stress Us(=uo/F) with distance x for uniformly distributed force.
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with centered symbol (o—o—o) for MCC and dashed line with centered symbol (o---o---0) for MIS at
t =0.5. These variations are shown in Figs. 1-9. The comparison between micropolar cubic crystal and
micropolar isotropic solid is shown. The computations are carried out for y = 1.0 in the range 0 < x < 10.0.

£.0 ~
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I

=
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L

Normal force stress Tp
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Fig. 5. Variation of normal force stress Th(=t,,/F) with distance x for uniformly distributed force.
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Fig. 6. Variation of tangential couple stress Ma3(=m,3/F) with distance x for uniformly distributed force.
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Normal displacement T

Fig. 7. Variation of normal displacement U,(=u,/F) with distance x for linearly distributed force.

Normal force stress Te

Fig. 8. Variation of normal force stress T»(=t2/F) with distance x for linearly distributed force.
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6. Discussions for various cases

6.1. Concentrated force

The variations of normal displacement, normal force stress and tangential couple stress being oscillatory
are similar in nature with difference in their magnitudes. Although the values of normal force stress are
more as compared to normal displacement and tangential couple stress, it is observed that the magnitude
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Fig. 9. Variation of tangential couple stress M,3(=m,3/F) with distance x for linearly distributed force.

of oscillations decrease with increase in time. Also the values of all the quantities decrease with increase in
horizontal distance. The variations of normal displacement, normal force stress and tangential couple stress
are shown in Figs. 1-3 respectively.

6.2. Uniformly distributed force

The variations of all the quantities are similar in nature to the variations obtained in case of concentrated
force. However the values of all the quantities for MIS are large as compared to the values for MCC and
hence to compare the variations among both the solids, the values of normal displacement, normal force
stress and tangential couple stress for MIS have been demagnified by 10, 100 and 10 respectively. The vari-
ations of normal displacement, normal force stress and tangential couple stress in case of uniformly distrib-
uted force are shown in Figs. 4-6 respectively.

6.3. Linearly distributed force

It is observed that the oscillations of the variations of quantities are less as compared to the oscillations
obtained on the application of concentrated force and uniformly distributed force. Also, the values of nor-
mal force stress and tangential couple stress, very close to the point of application of source, are more for
MCC as compared to MIS but the variation for normal displacement are opposite in nature at the same
point. The variations of normal displacement, normal force stress and tangential couple stress shown in
Figs. 7-9 respectively depicts that the variations of all the quantities converges to zero with increase in hor-
izontal distance.

7. Conclusion

The properties of a body depend largely on the direction of symmetry. The values of all the quantities
decrease with increase in time for various forces. The values of all these quantities for MIS are large as
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compared to MCC when uniformly distributed force is applied. The values of normal displacement, normal
force stress and tangential couple stress are less when concentrated force is applied or we may say that the
body is deformed to a much more extent on the application of strip loading.
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