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Abstract

The response of a micropolar cubic crystal due to various sources has been studied. The eigenvalue approach using
Laplace and Fourier transforms has been employed to solve the problem. The integral transforms have been inverted by
using a numerical technique to obtain the displacement, microrotation and stress components in the physical domain.
The results of normal displacement, normal force stress and tangential couple stress have been compared for micropolar
cubic crystal and micropolar isotropic solid and illustrated graphically.
� 2005 Published by Elsevier Ltd.
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1. Introduction

The classical theory of elasticity does not explain certain discrepancies that occur in the case of problems
involving elastic vibrations of high frequency and short wavelength, that is, vibrations due to the generation
of ultrasonic waves. The reason lies in the microstructure of the material which exerts a special influence at
high frequencies and short wavelengths.

An attempt was made to eliminate these discrepancies by suggesting that the transmission of interaction
between two particles of a body through an elementary area lying within the material was affected not solely
by the action of a force vector but also by a moment (couple) vector. This led to the existence of couple
stress in elasticity. Polycrystalline materials, materials with fibrous or coarse grain structure come in this
category. The analysis of such materials requires incorporating the theories of oriented media. For this rea-
son, micropolar theories were developed by Eringen (1966a,b) for elastic solids and fluids.
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Following various methods, the elastic fields of various loadings, inclusion and inhomogeneity problems,
and interaction energy of point defects and dislocation arrangement have been discussed extensively in the
past. Generally all materials have elastic anisotropic properties which mean the mechanical behavior of an
engineering material is characterized by the direction dependence. However the three-dimensional study for
an anisotropic material is much more complicated to obtain than the isotropic one, due to the large number
of elastic constants involved in the calculation.

Because a wide class of crystals such as W, Si, Cu, Ni, Fe, Au, Al, etc., which are some frequent used
substances, belong to cubic materials. The cubic materials have nine planes of symmetry whose normals
are on the three coordinate axes and on the coordinate planes making an angle p/4 with the coordinate
axes. With the chosen coordinate system along the crystalline directions, the mechanical behavior of a cubic
crystal can be characterized by four independent elastic constants A1, A2, A3 and A4.

To understand the crystal elasticity of a cubic material, Chung and Buessem (1967) presented a conve-
nient method to describe the degree of the elasticity anisotropy in a given cubic crystal. Later, Lie and
Koehler (1968) used a Fourier expansion scheme to calculate the stress fields caused by a unit force in a
cubic crystal. Steeds (1973) gave a complete discussion on the displacements, stresses and energy factors
of the dislocations for two-dimensional anisotropic materials. Boulanger and Hayes (2000) investigated
inhomogeneous plane waves in cubic elastic materials. Bertram et al. (2000) discussed generation of discrete
isotropic orientation distributions for linear elastic cubic crystals. Kobayashi and Giga (2001) investigated
anisotropy and curvature effects for growing crystals. Domanski and Jablonski (2001) studied resonances of
nonlinear elastic waves in cubic crystal. Destrade (2001) considered the explicit secular equation for surface
acoustic waves in monoclinic elastic crystals. Zhou and Ogawa (2002) investigated elastic solutions for a
solid rotating disk with cubic anisotropy. Minagawa et al. (1981) discussed the propagation of plane har-
monic waves in a cubic micropolar medium. Recently Kumar and Rani (2003) studied time harmonic
sources in a thermally conducting cubic crystal. However no attempt has been made to study source prob-
lems in micropolar cubic crystals.

The present investigation is to determine the components of displacement, microrotation and stresses in
micropolar cubic crystal due to concentrated force, uniformly distributed force and linearly distributed
force. The solutions are obtained by using eigenvalue approach after employing integral transformation
technique. The integral transforms are inverted using a numerical method.
2. Problem formulation

We consider a homogeneous micropolar cubic crystal of infinite extent with Cartesian coordinate system
(x,y,z). To analyze the displacements, microrotation and stresses at the interior of the medium due to var-
ious sources, the continuum is divided into two half-spaces defined by

(i) half space I jxj < 1, �1 < y 6 0, jzj < 1,
(ii) half space II j x j < 1, 0 6 y < 1, j zj < 1.

If we restrict our analysis to the plane strain parallel to xy-plane with displacement vector~u ¼ ðu1; u2; 0Þ
and microrotation vector ~/ ¼ ð0; 0;/3Þ then the field equations and constitutive relations for such a med-
ium in the absence of body forces and body couples given by Minagawa et al. (1981) can be recalled as
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where t22, t21, m23 are the components of normal force stress, tangential force stress and tangential couple
stress respectively A1, A2, A3, A4, B3 are characteristic constants of the material, q is the density and j is the
microinertia and
r2 ¼ o
2

ox2
þ o

2

oy2
.

Introducing the dimensionless variables defined by the expressions
x0 ¼ x
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ð7Þ
where
x
2 ¼ A4 � A3

qj
; c21 ¼

A1

q
. ð8Þ
Using (7), the system of Eqs. (1)–(3) reduce to (dropping the primes),
A1
o
2u1
ox2

þ A3
o
2u1
oy2

þ ðA2 þ A4Þ
o
2u2

oxoy
þ A4ðA3 � A4Þ

A1

o/3

oy
¼ qc21

o
2u1
ot2

; ð9Þ

A3

o
2u2
ox2

þ A1

o
2u2
oy2

þ ðA2 þ A4Þ
o
2u1

oxoy
� A4ðA3 � A4Þ

A1

o/3

ox
¼ qc21

o
2u2
ot2

; ð10Þ

B3

A4x
2

A1c21
r2/3 þ ðA3 � A4Þ

ou2
ox

� ou1
oy

� �
� 2

A4ðA3 � A4Þ
A1

/3 ¼ qjx
2 A4

A1

o2/3

ot2
. ð11Þ
The initial conditions are given by
unðx; y; 0Þ ¼ _unðx; y; 0Þ ¼ 0; n ¼ 1; 2;

/3ðx; y; 0Þ ¼ _/3ðx; y; 0Þ ¼ 0.
ð12Þ
Applying the Laplace transform with respect to time �t� defined by
f�unðx; y; pÞ; �/3ðx; y; pÞg ¼
Z 1

0

funðx; y; tÞ;/3ðx; y; tÞge�pt dt; n ¼ 1; 2 ð13Þ
and then the Fourier transform with respect to �x� defined by
f~unðn; y; pÞ; ~/3ðn; y; pÞg ¼
Z 1

�1
f�unðx; y; pÞ; �/3ðx; y; pÞgeinx dx; n ¼ 1; 2 ð14Þ
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on Eqs. (9)–(11) and with the help of initial conditions (12), we obtain
D2~u1 ¼ b11~u1 þ a12D~u2 þ a13D~/3; ð15Þ
D2~u2 ¼ b22~u2 þ a21D~u1 þ b23~/3; ð16Þ
D2~/3 ¼ b33~/3 þ a31D~u1 þ b32D~u2; ð17Þ
where
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qc21p
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qc21p

2 þ n2A3
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1
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x
2A4B3
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x
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inðA2 þ A4Þ

A1

; a31 ¼
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A4B3x
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ð18Þ
Eqs. (15)–(17) may be written as
DW ðn; y; pÞ ¼ Aðn; pÞW ðn; y; pÞ; ð19Þ

where
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DV

� �
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0
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ð20Þ
O and I are respectively zero and identity matrix of order 3.
To solve Eq. (19), we assume
W ðn; y; pÞ ¼ X ðn; pÞeqy ; ð21Þ

which leads to eigenvalue problem. The characteristic equation corresponding to matrix A is given by
jA� qI j ¼ 0; ð22Þ

which on expansion provides us
q6 þ k1q4 þ k2q2 þ k3 ¼ 0; ð23Þ

where
k1 ¼ �ða12a21 þ a13a31 þ b11 þ b22 þ b33Þ;
k2 ¼ a12ða21b33 � b23a31Þ þ a13ðb22a31 � a21b32Þ þ b22b33 � b23b32 þ b11ðb22 þ b33Þ;
k3 ¼ b11ðb23b32 � b22b33Þ.

ð24Þ
The eigenvalues of the matrix A are the characteristic roots of Eq. (23). The vectors X(n,p) corresponding to
the eigenvalues qs can be determined by solving the homogeneous equation
½A� qI �X ðn; pÞ ¼ 0. ð25Þ
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The set of eigenvectors X sðn; pÞ; s ¼ 1; 2; . . . ; 6 may be obtained as
X sðn; pÞ ¼
Xg1ðn; pÞ
Xg2ðn; pÞ

� �
; ð26Þ
where
Xg1ðn; pÞ ¼
qg

ag

bg

0
B@

1
CA; Xg2ðn; pÞ ¼

q2g
agqg

bgqg

0
B@

1
CA; q ¼ qg; g ¼ 1; 2; 3; ð27Þ

XR1ðn; pÞ ¼
�qR

aR

bR

0
B@

1
CA; XR2ðn; pÞ ¼

q2R
�aRqR

�bRqR

0
B@

1
CA; R ¼ g þ 3; q ¼ �qg; g ¼ 1; 2; 3 ð28Þ
and
ag ¼
b11b23 � q2gðb23 þ a21a13Þ

rg
;

bg ¼
q2ga31 þ agb32

q2g � b33
;

rg ¼ q2ga13 þ a12b23 � b22a13.

ð29Þ
The solution of Eq. (21) is given by
W ðn; y; pÞ ¼
X3

s¼1

½BsX sðn; pÞ expðqsyÞ þ Bsþ3X sþ3ðn; pÞ expð�qsyÞ�; ð30Þ
where BNðN ¼ 1; 2; . . . ; 6Þ are arbitrary constants.

Eq. (30) represents the solution of the general problem in case of micropolar cubic crystals and can be
applied to a class of problem in the domain of Laplace and Fourier transforms.
3. Application

3.1. Mechanical sources

We consider an infinite micropolar cubic crystal in which a normal force F0 = Fw(x)d(t) is acting at the
origin of the Cartesian coordinate system, where d(t) is Dirac delta function, F is the magnitude of force
applied and w(x) specify the vertical load distributed function along x-axis. Also the components of dis-
placement, microrotation, tangential force stress and tangential couple stress must be continuous across
the interface. Mathematically the boundary conditions at the interface of two half-spaces y = 0 are given by
u1ðx; 0þ; tÞ � u1ðx; 0�; tÞ ¼ 0; u2ðx; 0þ; tÞ � u2ðx; 0�; tÞ ¼ 0; /3ðx; 0þ; tÞ � /3ðx; 0�; tÞ ¼ 0;

t22ðx; 0þ; tÞ � t22ðx; 0�tÞ ¼ �FwðxÞdðtÞ; t21ðx; 0þ; tÞ � t21ðx; 0�; tÞ ¼ 0;

m23ðx; 0þ; tÞ � m23ðx; 0�; tÞ ¼ 0.

ð31Þ
Using (7) and applying Laplace and Fourier transforms defined by (13) and (14) on Eq. (31), after suppress-
ing the primes, and with the help of Eq. (30), we obtain the transformed components of displacement,
microrotation and stresses as
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~u1 ¼
�1

D
½q1De�q1y þ q2D2e

�q2y þ q3D3e
�q3y � q1D4e

q1y � q2D5e
q2y � q3D6e

q3y �; ð32Þ

~u2 ¼
1

D
½a1D1e

�q1y þ a2D2e
�q2y þ a3D3e

�q3y þ a1D4e
q1y þ a2D5e

q2y þ a3D6e
q3y �; ð33Þ

~/3 ¼
1

D
½b1D1e

�q1y þ b2D2e
�q2y þ b3D3e

�q3y þ b1D4e
q1y þ b2D5e

q2y þ b3D6e
q3y �; ð34Þ

~t22 ¼
1

D
½r1D1e

�q1y þ r2D2e
�q2y þ r3D3e

q3y � r1D4e
q1y � r2D5e

q2y � r3D6e
q3y �; ð35Þ

~t21 ¼
1

D
½s1D1e

�q1y þ s2D2e
�q2y þ s3D3e

�q3y � s1D4e
q1y � s2D5e

q2y � s3D6e
q3y �; ð36Þ

~m23 ¼ � K
A11D

½b1q1D1e
�q1y þ b2q2D2e

�q2y þ b3q3D3e
�q3y � b1q1D4e

q1y � b2q2D5e
q2y � b3q3D6e

q3y �; ð37Þ
where
D1;4 ¼ �4F ~wðnÞh1G; D2;5 ¼ �4F ~wðnÞh2G; D3;6 ¼ �4F ~wðnÞh3G;
D ¼ 8G½s1ða2b3 � a3b2Þ � s2ða1b3 � a3b1Þ þ s3ða1b2 � a2b1Þ�;
G ¼ r1q2q3ðb3 � b2Þ � r2q1q3ðb3 � b1Þ þ r3q1q2ðb2 � b1Þ;

h1;2;3 ¼ s3;3;2a2;1;1 � s2;1;1a3;3;2; sg ¼
1

A1

�inagA4 þ A3q2g þ bgðA3 � A4Þ
A4

A1

� �
;

rg ¼ qg in
A2

A1

� ag

� �
; g ¼ 1; 2; 3.

ð38Þ
3.1.1. Concentrated normal force

In order to determine displacements, microrotation and stresses due to concentrated force described as
Dirac delta function, w(x) = d(x) must be used. The Fourier transform of w(x) with respect to pair (x,n) will
be ~wðnÞ ¼ 1.

3.1.2. Uniformly distributed force
The solution due to uniformly distributed force is obtained by setting
wðxÞ ¼
1 if jxj 6 a;

0 if jxj > a;

�

in Eq. (31). The Fourier transform with respect to the pair (x,n) for the case of a uniform strip load of unit
amplitude and width 2a applied at the origin of the coordinate system (x = y = 0) in dimensionless form
after suppressing the primes becomes
~wðnÞ ¼ 2 sin
nc1a
x


� �

n

� �
; n 6¼ 0. ð39Þ
3.1.3. Linearly distributed force

The solution due to linearly distributed force is obtained by substituting
wðxÞ ¼ 1� jxj
a

if jxj 6 a;

0 if jxj > a;

2
4 ð40Þ
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in Eq. (31). The Fourier transform of w(x) in dimensionless form after suppressing the primes is
~wðnÞ ¼
2 1� Cos nc1a

x


� �� �
n2c1a
x


. ð41Þ
The expressions for the components of displacement, microrotation, force stress and couple stress may be

obtained as in Eqs. (32)–(37), by replacing ewðnÞ by 1, 2 sin nc1a
x


� ��
n

� �
and

2 1�Cos
nc1a
x


� �� �
n2c1a
x


in case of concen-

trated force, uniformly distributed force and linearly distributed force respectively.

3.2. Particular case

Taking A1 = k + 2l + K, A2 = k, A3 = l + K, A4 = l, B3 = c, in Eqs. (32)–(37) with (39)–(41) we obtain
the corresponding expressions in micropolar isotropic medium for concentrated force, uniformly distrib-
uted force and linearly distributed force respectively. These results tally with the one if we solve the problem
in micropolar isotropic medium.
4. Inversion of the transform

The transformed displacements and stresses are functions of y, the parameters of Laplace and Fourier
transforms p and n respectively, and hence are of the form ~f ðn; y; pÞ. To get the function in the physical
domain, first we invert the Fourier transform using
�f ðx; y; pÞ ¼ 1

2p

Z 1

�1
e�inx~f ðn; y; pÞdn ¼ 1

p

Z 1

0

fcosðnxÞfe � i sinðnxÞfogdn; ð42Þ
where fe and fo are even and odd parts of the function ~f ðn; y; pÞ respectively. Thus, expressions (42) give us
the transform �f ðx; y; pÞ of the function f(x,y, t).

Now, for the fixed values of n, x and y, the �f ðx; y; pÞ in the expression (40) can be considered as the
Laplace transform �gðpÞ of some function g(t). Following Honig and Hirdes (1984), the Laplace transformed
function �gðpÞ can be converted as given below.

The function g(t) can be obtained by using
gðtÞ ¼ 1

2pi

Z Cþi1

C�i1
ept�gðpÞdp; ð43Þ
where C is an arbitrary real number greater than all the real parts of the singularities of �gðpÞ. Taking
p = C + iy, we get
gðtÞ ¼ eCt

2p

Z 1

�1
eity�gðC þ iyÞdy. ð44Þ
Now, taking e�CtgðtÞ as h(t) and expanding it as Fourier series in [0,2L] we obtain approximately the
formula
gðtÞ ¼ g1ðtÞ þ ED0 ;
where
g1ðtÞ ¼
C0

2
þ
X1
k¼1

Ck; 0 6 t 6 2L;

Ck ¼
eCt

L
R e

ikpt
L �g C þ ikp

L

� �� �
;

ð45Þ
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ED is the discretization error and can be made arbitrary small by choosing C large enough. The value of C

and L are chosen according to the criteria outlined by Honig and Hirdes (1984).
Since the infinite series in Eq. (45) can be summed up only to a finite number of N terms, so the approx-

imate value of g(t) becomes
gN ðtÞ ¼
C0

2
þ
XN
k¼1

Ck; 0 6 t 6 2L. ð46Þ
Now, we introduce a truncation error ET that must be added to the discretization error to produce the total
approximation error in evaluating g(t) using the above formula. Two methods are used to reduce the total
error. The discretization error is reduced by using the ‘‘Korrecktur’’-method, Honig and Hirdes (1984) and
then ‘‘e-algorithm’’ is used to reduce the truncation error and hence to accelerate the convergence.

The ‘‘ Korrecktur’’-method formula, to evaluate the function g(t) is
gðtÞ ¼ g1ðtÞ � e�2CLg1ð2Lþ tÞ þ ED0 ; ð47Þ

where
jED0 j � jEDj� ð48Þ

Thus, the approximate value of g(t) becomes
gNk
ðtÞ ¼ gN ðtÞ � e�2CLgN 0 ð2Lþ tÞ; ð49Þ
where, N 0 is an integer such that N 0 < N.
We shall now describe the e-algorithm which is used to accelerate the convergence of the series in Eq.

(46). Let N be a natural number and Sm ¼
Pm

k¼1Ck be the sequence of partial sums of Eq. (46). We define
the e-sequence by
e0;m ¼ 0; e1;m ¼ Sm;

enþ1;m ¼ en�1;mþ1 þ
1

en;mþ1 � en;m
; n;m ¼ 1; 2; 3 . . .
It can be shown Honig and Hirdes (1984) that the sequence e1,1, e3,1, . . . , eN,1 converge to g(t) + ED � C0/2
faster than the sequence of partial Sm,m = 1,2,3, . . . The actual procedure to invert the Laplace transform
reduces to the study of Eq. (47) together with the e-algorithm.

The last step is to evaluate the integral in Eq. (42). The method for evaluating this integral is given by
Press et al. (1986) and which involves the use of Rhomberg�s integration with adaptive step size. This also
uses the results from successive refinement of the extended trapezoidal rule followed by extrapolation of the
results to the limit when the step size tends to zero.
5. Numerical results and discussions

For numerical computations, we take the following values of relevant parameters for micropolar cubic
crystal as
A1 ¼ 13.97� 1010 dyne=cm2; A3 ¼ 3.2� 1010 dyne=cm2; A2 ¼ 13.75� 1010 dyne=cm2;

A4 ¼ 2.2� 1010 dyne=cm2; B3 ¼ 0.056� 1010 dynes.
For the comparison with micropolar isotropic solid, following Gauthier (1982), we take the following val-
ues of relevant parameters for the case of aluminium epoxy composite as



Fig. 1. Variation of normal displacement U2(=u2/F) with distance x for concentrated force.

Fig. 2. Variation of normal force stress T22(=t22/F) with distance x for concentrated force.
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q ¼ 2.19 gm=cm3; k ¼ 7.59� 1010 dyne=cm2; l ¼ 1.89� 1010 dyne=cm2;

K ¼ 0.0149� 1010 dyne=cm2; c ¼ 0.0268� 1010 dyne; j ¼ 0.00196 cm2.
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The values of normal displacement U2 = (u2/F) normal force stress T22 = (t22/F) and tangential couple
stress M23 = (m23/F) for a micropolar cubic crystal (MCC) and micropolar isotropic solid (MIS) have been
studied at t = 0.1, 0.2 and 0.5 and the variations of these components with distance x have been shown by
(a) solid line (——) for MCC and dashed line (- - - -) for MIS at t=0.1, (b) solid line with centered symbol
(·—·—·) for MCC and dashed line with centered symbol (· - - -· - - -·) for MIS at t = 0.2 and (c) solid line
Fig. 3. Variation of tangential couple stress M23(=m23/F) with distance x for concentrated force.

Fig. 4. Variation of normal force stress U2(=u2/F) with distance x for uniformly distributed force.
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with centered symbol (�—�—�) for MCC and dashed line with centered symbol (�- - -�- - -�) for MIS at
t = 0.5. These variations are shown in Figs. 1–9. The comparison between micropolar cubic crystal and
micropolar isotropic solid is shown. The computations are carried out for y = 1.0 in the range 0 6 x 6 10.0.
Fig. 5. Variation of normal force stress T22(=t22/F) with distance x for uniformly distributed force.

Fig. 6. Variation of tangential couple stress M23(=m23/F) with distance x for uniformly distributed force.



Fig. 7. Variation of normal displacement U2(=u2/F) with distance x for linearly distributed force.

Fig. 8. Variation of normal force stress T22(=t22/F) with distance x for linearly distributed force.
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6. Discussions for various cases

6.1. Concentrated force

The variations of normal displacement, normal force stress and tangential couple stress being oscillatory
are similar in nature with difference in their magnitudes. Although the values of normal force stress are
more as compared to normal displacement and tangential couple stress, it is observed that the magnitude



Fig. 9. Variation of tangential couple stress M23(=m23/F) with distance x for linearly distributed force.
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of oscillations decrease with increase in time. Also the values of all the quantities decrease with increase in
horizontal distance. The variations of normal displacement, normal force stress and tangential couple stress
are shown in Figs. 1–3 respectively.

6.2. Uniformly distributed force

The variations of all the quantities are similar in nature to the variations obtained in case of concentrated
force. However the values of all the quantities for MIS are large as compared to the values for MCC and
hence to compare the variations among both the solids, the values of normal displacement, normal force
stress and tangential couple stress for MIS have been demagnified by 10, 100 and 10 respectively. The vari-
ations of normal displacement, normal force stress and tangential couple stress in case of uniformly distrib-
uted force are shown in Figs. 4–6 respectively.

6.3. Linearly distributed force

It is observed that the oscillations of the variations of quantities are less as compared to the oscillations
obtained on the application of concentrated force and uniformly distributed force. Also, the values of nor-
mal force stress and tangential couple stress, very close to the point of application of source, are more for
MCC as compared to MIS but the variation for normal displacement are opposite in nature at the same
point. The variations of normal displacement, normal force stress and tangential couple stress shown in
Figs. 7–9 respectively depicts that the variations of all the quantities converges to zero with increase in hor-
izontal distance.
7. Conclusion

The properties of a body depend largely on the direction of symmetry. The values of all the quantities
decrease with increase in time for various forces. The values of all these quantities for MIS are large as
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compared to MCC when uniformly distributed force is applied. The values of normal displacement, normal
force stress and tangential couple stress are less when concentrated force is applied or we may say that the
body is deformed to a much more extent on the application of strip loading.
References

Bertram, A., Bohlke, T., Gaffke, N., Heiligers, B., Offinger, R., 2000. On the generation of discrete isotropic orientation distributions
for linear elastic cubic crystals. J. Elast. 58 (3), 233–248.

Boulanger, P., Hayes, M., 2000. Special inhomogeneous plane waves in cubic elastic materials. Z. Angew. Math. Phys. 51, 1031–1038.
Chung, D.H., Buessem, W.R., 1967. The elastic anisotropy of crystals. J. Appl. Phys. 38 (5), 2010–2012.
Destrade, M., 2001. The explicit secular equation for surface acoustic waves in monoclinic elastic crystals. J. Acous. Soc. Am. 109 (4),

1398–1402.
Domanski, W., Jablonski, T., 2001. On resonances of nonlinear elastic waves in a cubic crystal. Arch. Mech. 53 (2), 91–104.
Eringen, A.C., 1966a. Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923.
Eringen, A.C., 1966b. Theory of micropolar fluids. J. Math. Mech. 16, 1–18.
Gauthier, R.D., 1982. Experimental investigations on micropolar media. In: Brulin, O., Hsieh, R.K.T. (Eds.), Mechanics of

Micropolar Media. World Scientific, Singapore.
Honig, G., Hirdes, V., 1984. A method for the numerical inversion of the Laplace transform. J. Comput. Appl. Math. 10, 113–132.
Kobayashi, R., Giga, Y., 2001. On anisotropy and curvature effects for growing crystals. Jpn. J. Ind. Appl. Math. 18 (2), 207–230.
Kumar, R., Rani, L., 2003. Elastodynamics of time harmonic sources in a thermally conducting cubic crystal. Int. J. Appl. Mech. Eng.

8 (4), 637–650.
Lie, K.-H.C., Koehler, J.S., 1968. The elastic stress field produced by a point force in a cubic crystal. Adv. Phys. 17, 421–478.
Minagawa, S., Arakawa, K., Yamada, M., 1981. Dispersion curves for waves in a cubic micropolar medium with reference to

estimations of the material constants for diamond. Bull. JSME 24 (187), 22–28.
Press, W.H., Teukolsky, S.A., Vellerling, W.T., Flannery, B.P., 1986. Numerical Recipes. Cambridge University Press, Cambridge.
Steeds, J.W., 1973. Introduction to Anisotropic Elasticity Theory of Dislocations. Clarendon Press, Oxford.
Zhou, F., Ogawa, A., 2002. Elastic solutions for a solid rotating disk with cubic anisotropy. ASME, J. Appl. Mech. 69, 81–83.


	Deformation in micropolar cubic crystal due to various sources
	Introduction
	Problem formulation
	Application
	Mechanical sources
	Concentrated normal force
	Uniformly distributed force
	Linearly distributed force

	Particular case

	Inversion of the transform
	Numerical results and discussions
	Discussions for various cases
	Concentrated force
	Uniformly distributed force
	Linearly distributed force

	Conclusion
	References


